Copied to
clipboard

G = C2×C922C3order 486 = 2·35

Direct product of C2 and C922C3

direct product, metabelian, nilpotent (class 4), monomial, 3-elementary

Aliases: C2×C922C3, C9215C6, (C9×C18)⋊2C3, (C3×C6).2He3, He3⋊C35C6, C32.2(C2×He3), (C3×C18).17C32, C6.7(He3⋊C3), (C3×C9).18(C3×C6), (C2×He3⋊C3)⋊1C3, C3.7(C2×He3⋊C3), SmallGroup(486,86)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C2×C922C3
C1C3C32C3×C9C92C922C3 — C2×C922C3
C1C3C32C3×C9 — C2×C922C3
C1C6C3×C6C3×C18 — C2×C922C3

Generators and relations for C2×C922C3
 G = < a,b,c,d | a2=b9=c9=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b7c-1, dcd-1=b3c >

3C3
27C3
27C3
27C3
3C6
27C6
27C6
27C6
3C9
3C9
3C9
3C9
9C32
9C32
9C32
3C18
3C18
3C18
3C18
9C3×C6
9C3×C6
9C3×C6
3He3
3He3
3He3
3C3×C9
3C3×C18
3C2×He3
3C2×He3
3C2×He3

Smallest permutation representation of C2×C922C3
On 54 points
Generators in S54
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 16)(14 17)(15 18)(19 54)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(27 53)(28 38)(29 39)(30 40)(31 41)(32 42)(33 43)(34 44)(35 45)(36 37)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 18 4 3 17 6 2 16 5)(7 15 10 9 14 12 8 13 11)(19 20 21 22 23 24 25 26 27)(28 30 32 34 36 29 31 33 35)(37 39 41 43 45 38 40 42 44)(46 47 48 49 50 51 52 53 54)
(1 36 47)(2 30 53)(3 33 50)(4 31 46)(5 34 52)(6 28 49)(7 37 21)(8 40 27)(9 43 24)(10 41 20)(11 44 26)(12 38 23)(13 42 22)(14 45 19)(15 39 25)(16 32 48)(17 35 54)(18 29 51)

G:=sub<Sym(54)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,16)(14,17)(15,18)(19,54)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(34,44)(35,45)(36,37), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,18,4,3,17,6,2,16,5)(7,15,10,9,14,12,8,13,11)(19,20,21,22,23,24,25,26,27)(28,30,32,34,36,29,31,33,35)(37,39,41,43,45,38,40,42,44)(46,47,48,49,50,51,52,53,54), (1,36,47)(2,30,53)(3,33,50)(4,31,46)(5,34,52)(6,28,49)(7,37,21)(8,40,27)(9,43,24)(10,41,20)(11,44,26)(12,38,23)(13,42,22)(14,45,19)(15,39,25)(16,32,48)(17,35,54)(18,29,51)>;

G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,16)(14,17)(15,18)(19,54)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(34,44)(35,45)(36,37), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,18,4,3,17,6,2,16,5)(7,15,10,9,14,12,8,13,11)(19,20,21,22,23,24,25,26,27)(28,30,32,34,36,29,31,33,35)(37,39,41,43,45,38,40,42,44)(46,47,48,49,50,51,52,53,54), (1,36,47)(2,30,53)(3,33,50)(4,31,46)(5,34,52)(6,28,49)(7,37,21)(8,40,27)(9,43,24)(10,41,20)(11,44,26)(12,38,23)(13,42,22)(14,45,19)(15,39,25)(16,32,48)(17,35,54)(18,29,51) );

G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,16),(14,17),(15,18),(19,54),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(27,53),(28,38),(29,39),(30,40),(31,41),(32,42),(33,43),(34,44),(35,45),(36,37)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,18,4,3,17,6,2,16,5),(7,15,10,9,14,12,8,13,11),(19,20,21,22,23,24,25,26,27),(28,30,32,34,36,29,31,33,35),(37,39,41,43,45,38,40,42,44),(46,47,48,49,50,51,52,53,54)], [(1,36,47),(2,30,53),(3,33,50),(4,31,46),(5,34,52),(6,28,49),(7,37,21),(8,40,27),(9,43,24),(10,41,20),(11,44,26),(12,38,23),(13,42,22),(14,45,19),(15,39,25),(16,32,48),(17,35,54),(18,29,51)]])

70 conjugacy classes

class 1  2 3A3B3C3D3E···3J6A6B6C6D6E···6J9A···9X18A···18X
order1233333···366666···69···918···18
size11113327···27113327···273···33···3

70 irreducible representations

dim111111333333
type++
imageC1C2C3C3C6C6He3C2×He3He3⋊C3C2×He3⋊C3C922C3C2×C922C3
kernelC2×C922C3C922C3C9×C18C2×He3⋊C3C92He3⋊C3C3×C6C32C6C3C2C1
# reps11262622661818

Matrix representation of C2×C922C3 in GL3(𝔽19) generated by

1800
0180
0018
,
1100
040
0016
,
900
040
009
,
010
001
100
G:=sub<GL(3,GF(19))| [18,0,0,0,18,0,0,0,18],[11,0,0,0,4,0,0,0,16],[9,0,0,0,4,0,0,0,9],[0,0,1,1,0,0,0,1,0] >;

C2×C922C3 in GAP, Magma, Sage, TeX

C_2\times C_9^2\rtimes_2C_3
% in TeX

G:=Group("C2xC9^2:2C3");
// GroupNames label

G:=SmallGroup(486,86);
// by ID

G=gap.SmallGroup(486,86);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,224,824,873,453,3250]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^9=c^9=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^7*c^-1,d*c*d^-1=b^3*c>;
// generators/relations

Export

Subgroup lattice of C2×C922C3 in TeX

׿
×
𝔽